

 1

RAI Systems Engineering/Analysis
Dr. Ronald C. Salley and Hugh A. Pritchett

Purpose:
This paper describes the ATS (Automatic Test System) systems analysis results that Dr. Ronald
C. Salley and Hugh A. Pritchett, henceforth called the investigators, produced relating to the
Resource Adapter Interface (RAI) ATS Framework element. The systems analysis was
performed as a result of two Small Business Innovative Research (SBIR) grants, one from
NAVAIR (N00-102) and one from the Air Force ATS program management office LEEA
(AF04-272). Although this paper does not reflect all products of the SBIRs, it clearly and
definitively exposes the information needed to attain the Holy Grail in test, TEST PLATFORM
INDEPENDENT TEST PROGRAMS!

Foundation:
The investigators scientifically delineated and defined a platform independent RAI test paradigm
by applying
• systems engineering processes,
• a proprietary underlying system theory, i.e., the Theory of Real Systems, and
• mathematical and computer science modeling techniques.
The RAI paradigm is based on a rigorously defined hierarchy of primitive data structures that
allow a clear and complete visualization of
• the platform dependence of traditional test programs and
• the platform independence of RAI test programs.

The RAI paradigm
• unequivocally identifies all aspects of traditional test-program participation in platform

dependence;
• represents all test requirements as (platform independent) data structures;
• enforces platform independence when used exclusively to express test requirements in test

programs;
• allows visualization and containment of test requirements that are not available in traditional

test programs; and
• allows test programmers a clear way to define what needs to occur without functional

language calls and implied timing encumbrances that are demanded by traditional test
programming.

RAI test programs
• define platform independent test-requirements,
• pass these requirements through an RAI to a resource manager, and otherwise
• provide only diagnostic guidance and sequencing.
See Figure 1.

 2

Definitions:
• A capability is a data object that is a signal, a location, and timing, where

o a signal is an IEEE – 1641 signal,
o a location is a point on the UUT, and
o timing is a delay (with a precision) and a maximum lifetime of the signal.
See Figure 2.

• A test requirement is a tree-structured data object whose nodes are capabilities that are
related to their parents by the timing of their signals (which is the timing defined for the
capability, above). See Figure 3.
A test requirement is not a definition of a test. A test requirement is a definition of a
requirement for a test. A test requirement is not executable. A test requirement is a data
object. A test requirement is in a form that is directly definable by a data-definition language
such as XML.

• A Resource Adapter Interface (RAI) is a boundary, through which test-requirement data
objects pass, that provides platform independence for test application software.

Explanation:

Traditional ATS involves understanding UUT Test Requirements (UTRs) and manifesting them
using test station assets and test languages. The problem has been that the concept of the UTR is
nebulous in traditional test languages. Traditional languages disburse the UTR concept among
language functionality and data definition making it a puzzle that must be discerned rather than
an entity that is distinctly visible.

Resource
Manager (RM)

Test Requirement Object

Test Platform Independent
Test Program

Test Platform

RAI Visual Depiction

Control
Diagnostic
Sequencing

Test
Requirments

&

RAI

Figure 1

 3

The ATLAS language attempts to provide test-platform independent UTRs using signals. The
concept of signals is a good first step in that it showed a need and an approach. But traditional
test languages do not achieved platform independent test programs. This white paper explains
why traditional languages cannot be platform independent and provides a definition of how
platform independence can be achieved.

UUT Test Requirements (UTRs) general discussion
UTRs are almost never single signals. UTRs are almost always multiple signals working in
concert at different times and different locations (UUT connection points). The investigators
reviewed several TPS migration projects in the course of their analysis and during this study
found one pervasive aspect of traditional test languages, like ATLAS, that makes them
unsuitable for providing complete platform independent test programs. Traditional languages
define how signals work in concert by using executable language statements to explicitly
sequence test platform assets (even though the assets might be unknown)… a major failing for
test platform independence. Traditional languages may not, but often do, control how individual
instruments on a test platform perform but traditional languages do control how test platforms
perform in general.
Traditional languages may be somewhat instrument independent but are not platform
independent. Traditional developers must understand how test platforms perform generically
and, even then, their programs must still be modified when ported across test platforms.
The RAI research and analysis defines a cohesive scientific definition for a UTR, which is a
definition for what the concert of signals is, not a definition of how the concert of signals is
performed. No matter how test platforms perform, RAI test programs are completely portable…

 4

as long as target test platforms can perform what is desired, i.e., as long as target test platforms
can meet the UTR.

Capabilities
The term capability is traditionally used without formal definition. The RAI research and
analysis lead to the formal definition, above, that says a capability is
• any service, i.e., signal, that a UUT might require,
• a location (usually a UUT pin) where the service is to be provided, and
• a time and maximum duration for which the service is to be provided.
See Figure 2.
Capability was defined with the realization that platform independent test programs would need
to provide test platform capabilities in terms of UTRs and not in platform related ways. It is not
coincidental that the ATLAS concept of signal is present in the RAI capability. The ATLAS
concept of a signal is what gives ATLAS its attempted instrument independence but not platform
independence. In furtherance of platform independence, a signal must be defined in concert with
UUT locations and timing of other signals.

UUT Test Requirements (UTRs)
The definition for capability derived from the RAI research and analysis allows individual
signals but a single signal alone is rarely sufficient for a complete coherent UTR. Capabilities
must be packaged to act in concert with each other. Using systems engineering analysis,
mathematical set theory and the Theory of Real Systems, the generic format of this package was
found to be that defined for the UTR, see Figure 3. The format allows test programs to create
UTRs for any test scenario and to present the UTRs to the RAI as an unambiguous platform
independent data object.

Resource Adapter Interface (RAI)
The RAI itself is an almost innocuous entity with one method that has one argument, a UTR.
Test programs call this one method to deliver the UTR to a resource manager. The resource
manager sets up the test platform according to the UTR and causes the test platform to perform
the test, without test program intervention. The method returns a test result which is no more
than a copy of the executed UTR, with measured values fulfilled.
Various companies have referred to similar non-RAI methods by various names. A common
name, represented here as an RAI method, is

Test_Result = Get_Capability(UUT_Test_Requirement);

The investigators believe a more descriptive name would be
Test_Result = Render_UTR(UUT_Test_Requirement);

Of course, if the assignment operator were overloaded, naming the method would be moot, e.g.,
Test_Result = UUT_Test_Requirement

In any case, the questions is “can these scientifically based concepts be implemented”? The
answer is, “yes.” The next section shows one possible implementation in C++. The C++
representation is a complete model in code of what was defined in words in sections above.
Together they completely document the investigators’ findings. This implementation is provided
only as a vehicle to easily convey the findings.

 5

C++ Representations

Capability:

struct Capability
{
 1641_Signal* m_pSignal;
 String m_Location;
 Timing m_Timing;
};

 where m_pSignal is a IEEE-1641 signal with range, resolution and accuracy.

 where m_Location is a string indicating UUT connection location as required of the UTR.

 where m_Timing is:

struct Timing
{
 Double m_Delay ;
 double Life_Time;
};

 where “Double” is a regular “double” with range, resolution and accuracy inherent.

Test_requirement:

struct Test_Requirement: Capability
{
 string m_ID;
 Test_Requirement m_Test_Req[];
};

typedef Test_Requirement UUT_Test_Requirement;

These clearly defined and now publicly documented definitions enable UTRs to be defined in
clear, visualizeable, and most importantly hardware independent terms. These definitions are
refined, complete, and conceptually simple. They are the only implementation known that
exclusively uses data to express UTRs. No language function that imposes timing and general
systems knowledge is required. Making this the only 100% RAI definition ever achieved. The
constructs allow visualization of UTRs similar to that shown in Figure 3. The graphic depiction
allows test programmers to clearly visualize UTRs and to better understand them as they are
developed. The investigators have performed extensive use case application against the
definitions and the definitions have been repeatedly proven valid.
The visualization (see Figures 2 and 3) afforded by these definitions of capability, test
requirement, and UTR extends to parallel testing. A test requirement is a capability and an array

 6

of test requirements. If a test requirement’s capability is null, the test requirement’s array of test
requirements are requirements for parallel tests.

Conclusion:

This paper has presented the investigators’ system analysis for RAI related research. The paper
has supplied the only clear and unambiguous way of defining UTRs as data only, thereby
enabling platform independent test programs. The scientifically based primitives provided in this
paper can support any UTR and can therefore be used to implement any test requirement
including parallel test requirements. The definitions are universally applicable, easily
understood, and easily applied. The products are a result of a scientific analysis and engineering
discipline that have been applied with a real world modeling paradigm and set of principals. The
definitions support all test scenarios and solve the platform dependence problem of traditional
test programs.

Challenge:

DoD and industry realize that platform dependent test programs are a problem that needs to be
resolved. Traditional approaches to resolving the problem have been iterative, based on existing
concepts/products, and produced incomplete solutions. Solving problems often means stepping
outside the box. This paper documents the results of a systematic scientific approach that stepped
outside the box to resolve the problem of platform dependent test programs.
Significant resistance to this solution has already come from some who are stakeholders in
existing technologies. A common affront to the solution is that it is not proven and is not
pragmatic. The testing community is challenged to analyze the solution and enumerate any
perceived deficiencies and/or shortcomings that would make it fail as a basis for test platform
independent test programs.

